Flat Earth

Laura, Daniel, Juha, Christian

Hypothesis

- Atm. gravity waves diminish
 - Changes in transient waves and circul. Pattern
 - Changes in atmospheric heat transport
- Changes in precipitation patterns
 - Changes in carbon uptake by land
- Changes in Ocean
 - Ocean heat transport

Wind patterns

northern hemisphere:

=> wind patterns resemble southern ones

=> changes in the baroclinic zones

Latitudinal temperature (Northern Hem.)

=> drastic temperature drop at the pole
=> reduction in atm heat flux at all heights

Precipitation

Change can be partly explained by:

- Mountains

- SST

CO2 - concentration

2. Ocean

Temperature and Salinity

- Strong cooling in north Atlantic.
- SST increase accompanied by SSS increase in northern Atlantic.

2. Ocean

Sea Ice

Sea ice thickness difference / m (annual mean)

2. Ocean

Deep water formation in northern Atlantic shifts southwards.

Conclusion

- Atm. meridional Temp.-gradient increase
- Wind patterns more uniform
- Deep water formation shifts southwards
- Land Carbon inventory is affected

Ocean barotropic streamf. Difference / 10⁷m³/s(annual mean)

NPP difference (g (C) m-2 yr-1)

